Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 9 Next »

Current state: Accepted

ISSUE: https://github.com/milvus-io/milvus/issues/15604

PRs: 

Keywords: bulk load, import

Released: with Milvus 2.1 

Authors:  

Summary

Import data by a shortcut to get better performance compared with insert(). 


Motivation

Typically, it cost several hours to insert one billion entities with 128-dimensional vectors. We need a new interface to do bulk load for the following purposes:

  1. import data from JSON format files. (first stage)
  2. import data from Numpy format files. (first stage)
  3. copy a collection within on Milvus 2.0 service. (second stage)
  4. copy a collection from one Milvus 2.0 service to another. (second stage)
  5. import data from Milvus 1.x to Milvus 2.0 (third stage)
  6. parquet/faiss files (TBD)

Design Details

Some points to consider:

  • JSON format is flexible, ideally, the import  API ought to parse user's JSON files without asking user to reformat the files according to a strict rule.
  • User can store scalar fields and vector fields in a JSON file, with row-based or column-based, the import API ought t support both of them.

         A row-based example:

{
  "table": {
    "rows": [
      {"id": 1, "year": 2021, "vector": [1.0, 1.1, 1.2]},
      {"id": 2, "year": 2022, "vector": [2.0, 2.1, 2.2]},
      {"id": 3, "year": 2023, "vector": [3.0, 3.1, 3.2]}
    ]
  }
}

         A column-based example:

{
  "table": {
    "columns": [
      "id": [1, 2, 3],
      "year": [2021, 2022, 2023],
      "vector": [
        [1.0, 1.1, 1.2],
        [2.0, 2.1, 2.2],
        [3.0, 3.1, 3.2]
      ]
    ]
  }
}


  • Numpy file is a binary format, we only treat it as vector data. Each Numpy file represents a vector field.
  • Transferring a large file from client to server proxy to datanode is time-consume work and occupies too much network bandwidth, we will ask users to upload data files to MinIO/S3 where the datanode can access directly. Let the datanode read and parse files from MinIO/S3.
  • Users may store scalar fields and vector fields in different format files. For example, store scalar fields in JSON files and store vector fields in Numpy files.
  • The parameter of import API is easy to expand in future

SDK Interfaces

Based on the several points, we choose a JSON object as a parameter of python import() API, the API declaration will be like this:

def import(options)

The "options" is a JSON object which has the following format:

{
	"data_source": { // required
		"type": "minio", // required, currently only support "minio"/"s3"
		"address": "localhost:9000", // optional, milvus server will use its minio setting if without this value
		"accesskey_id": "minioadmin", // optional, milvus server will use its minio setting if without this value
		"accesskey_secret": "minioadmin", // optional, milvus server will use its minio setting if without this value
		"use_ssl": false, // optional, milvus server will use its minio setting if without this value
		"bucket_name": "mybucket" // optional, milvus server will use its minio setting if without this value
	},

	"internal_data": { // optional, external_data or internal_data. (external files include json, npy, etc. internal files are exported by milvus)
		"path": "xxx/xxx/xx", // relative path to the source storage where store the exported data
		"collections_mapping": { // optional, give a new name to collection during importing.
			"aaa": "bbb",
			"ccc": "ddd"
		}
	},

	"external_data": { // optional, external_data or internal_data. (external files include json, npy, etc. internal files are exported by milvus)
		"target_collection": "xxx", // target collection name
		"files": [ // required
			{
				"file": xxxx/xx.json, // required, relative path under the storage source defined by DataSource, currently support json/npy
				"type": "row_based", // required, row_based or column_based
				"fields_mapping": { // optional, specify the target fields which should be imported. Milvus will import all fields if this list is empty.
					"table.rows.id": "uid",
					"table.rows.year": "year",
					"table.rows.vector": "vector",
				}
			},
			{
				"file": xxxx/xx.json, // required, relative path under the storage source defined by DataSource, currently support json/npy
				"type": "column_based", // required, row_based or column_based
				"fields_mapping": { // optional, specify the target fields which should be imported. Milvus will import all fields if this list is empty.
					"table.columns.id": "uid",
					"table.columns.year": "year",
					"table.columns.vector": "vector",
				}
			},
			{
				"file": xxxx/xx.npy, // required, relative path under the storage source defined by DataSource, currently support json/npy
				"type": "column_based", // required, row_based or column_based
				"fields_mapping": { // optional, specify the target fields which should be imported. Milvus will import all fields if this list is empty.
					"vector": "vector",
				}
			}
		],
		"default_fields": { // optional, use default value to fill some fields
			"age": 0,
			"weight": 0.0
		},
	}
}


Key fields of the JSON object:

  • "data_source": contains the address and login methods of MinIO/S3. If the address and login methods are not provided, Milvus will use its MinIO/S3 configurations.
  • "internal_data": reserved field for collection clone, not available in the first stage. It requires another API export().
  • "external_data": for importing data from user's files.  Let datanode where to read the data files and how to parse them.

RPC Interfaces



Internal machinery



Test Plan

  • No labels